If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2-120x+11=0
a = 27; b = -120; c = +11;
Δ = b2-4ac
Δ = -1202-4·27·11
Δ = 13212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13212}=\sqrt{36*367}=\sqrt{36}*\sqrt{367}=6\sqrt{367}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-6\sqrt{367}}{2*27}=\frac{120-6\sqrt{367}}{54} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+6\sqrt{367}}{2*27}=\frac{120+6\sqrt{367}}{54} $
| 65-x=53 | | 10=10s-90 | | 18=6-b+4b | | 2x+11=-3x+16 | | 1/3x+1/3x-1=3/30 | | h+3h+2h+8=20 | | 16=-40x-25x^2 | | 7x-5-4x=7 | | 4x(4x+1)=2112 | | 4m+12=22 | | 3x+4x+8=14 | | 2m+3(m-8=1) | | 4x(4x-1)=2112 | | 8m+4=5m-14 | | 5x+30+2x-3=90 | | 8=x/3-4 | | 1/4x2/5=3/2x-1/3 | | 19b=17 | | 15,75=0,50+0.5x+x | | X^2-x-783=0 | | 9z-4=41 | | X^2-x-1122=0 | | 22x-6=218 | | y+(.18y.326)=251,349.20 | | 8x-32=32-8x | | 7.3x-5.18=-45.33 | | 2^(x+1)=3 | | 5v-26=54 | | -12/(20/21)=x | | 8s+15=23 | | 7.3x-5.18=45.33 | | 10(v-90)=80 |